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Drowned tapered and microlensed single-mode fibers offer significant manufacturing advantages as waveguide couplers. 
However, controlled manufacturing requires a better understanding of beam propagation in such photonics devices. The 
authors investigate the mode transforming properties of drowned tapered and microlensed fiber optics and suggest optimal 
geometries. 
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1. Lightwave modes and gaussian  
    approximations 
 
The introduction of the concept of mode is a 

fundamental requirement for accurate modeling of light 
propagation in fiber optics. In general terms, a propagation 
mode is a self-consistent electric field distribution with the 
specific property that its shape in the trasnsverse direction 
remains constant during propagation. The simplest type of 
mode in free space is the plane wave. However, plane 
waves do not resemble real waves since they have an 
infinite transverse extent and therefore other modes 
limited to the transverse spatial dimension are of higher 
interest. 

 

Fig. 1. Gaussian Beams. 

The simplest type of mode satisfying the above 
requirements is the Gaussian mode [1]. Gaussian beams 
contract or expand during propagation, but the amplitude 
profile is only transversally scaled and has a constant – 
Gaussian – shape. Gaussian modes are members of 
families of modes and their number is infinite. The most 
frequently used mode families are Hermite-Gauss and 
Laguerre-Gauss. Within a mode family the Gaussian mode 
is the fundamental mode and during the propagation the 
higher order modes transversally change in proportion to 
that of the fundamental mode. 

For light propagation in a waveguide the self-
consistency condition for a mode is stricter than for free 
space modes. Mode rescaling is not permitted in 
waveguides. An overall phase change per unit length – 
described by the propagation constant   - and losses or 

gains of total optical power are acceptable. Waveguides 
have finite number of guided propagation modes and the 
intensity distribution of each mode has a finite extent 
around the core of the waveguide. A single-mode fiber has 
only a single guided mode per polarization direction. 
Waveguides also have cladding modes and their intensity 
distributions fill the whole cladding and core regions and 
exhibit substantial propagation losses at the outer interface 
of the cladding [2]. 

Gaussians are radially symmetric distributions with 
electric field variations given by: 
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The Fourier Transform of a Gaussian is also a 
Gaussian distribution and Gaussian source distributions 
remain Gaussian at every point along their propagation 
path. This property is useful in visualizing the field 
distributions anywhere in optical systems. The intensity of 
the field is also a Gaussian: 
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The definition of the size of Gaussians is somewhat 

arbitrary because the Gaussian has no obvious boundaries. 
Figure 1 shows the Gaussian intensity distribution of a 

typical He-Ne laser. The parameter 0 , called the 

Gaussian Beam Radius, is the radius at which the intensity 

has decreased to 21 e of its value on its axis. Because of 

the unique self-Fourier Transform characteristic of 
Gaussians, the transverse distribution intensity remains 
Gaussian and only its radius  and the radius of curvature 

of the wavefront R  change with the position z , as shown 
in figure 1. The equations describing the Gaussian Beam 
Radius   and wavefront radius R  are: 
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In equations (03) and (04) 0  is the Gaussian Beam 

Radius and   is the wavelength. The above mentioned 
parameters occur in the same combination in both 
equations and they are often merged into a single 

parameter known as the Rayleigh Range,  Rz  [1] and at 

Rzz  , R  is minimum: 
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Optical fibers have two essential parts: the core and 

the cladding. The core acts as a cylindrical waveguide, 
while the cladding prevents the guided mode from 
interacting with anything outside of the fiber. For a 
constant refractive index difference n  between the core 
and the cladding, the mode profile within the core is 
described by the equation [2]: 
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In equation (06), 0J  is the Bessel function of first 

kind, 0k  is the free space wavenumber, and   represents 

the propagation constant. For ar   the profile is 
represented by: 
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The function  rf  from equation (07) strongly 

resembles a Gaussian for all r  values, provided the mode 

width parameter G  is properly chosen. The Gaussian 

approximation described by equation (07) provides a 
convenient single-parameter characterization of the 
fundamental mode for weakly guiding, step index, single-
mode fibers. 

A model of beam to guided-mode coupling requires 
the summation of plane waves to describe the incoming 
beam and the guided mode and cannot be entirely based on 
ray optics since beams of finite sizes are made up of 
combinations of plane waves with different propagation 
directions. Efficient coupling requires overlapping of the 

incident beam profile  rfb  and the outgoing mode 

profile  rfm . Henry and Verbeek [03] define the 

coupling efficiency as the ratio between the power in the 
guided mode and the power in the incoming beam. If 

 rfb  and  rfm  have the same polarization and 

interface reflection is negligible the coupling efficiency is 
described by the equation: 
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In equation (08),  rfb
 ,  rfm

  and DFT  are the 

complex conjugates of their respective functions and 
DFT  is the Discrete Fourier Transform. Henry and 
Verbeek equation helps identify the main factors affecting 
coupling efficiency. 

 
 

2. Mode transforming properties in tapered  
    core-cladding single-mode fibers 
  
Several methods are used to manufacture tapered and 

microlensed single-mode fibers. For typical coupling 
applications the taper is shaped on a controlled process by 
drowning the partly melted tip of the fiber [4].  Such 
approaches generate fibers with tapered core and cladding. 
Microlenses with spherical surfaces are also generated in 
the process. The characteristic geometry of a core-cladding 
taper is shown in Fig. 2. 

Manufacturing processes must be able to control the 
geometry of the taper and microlens as a way to control 
the spot size of the coupler. 
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For most guided-wave problems, the fastest variation of 
the field   is the phase variation due to propagation along 

the guiding axis. Assuming the guiding axis is z , this fast 
variation can be factored out by with the slowly varying 

field     zkiezyxzyxu


,,,,  . k


 is the reference 

wavenumber and represents the average variation of the 
field  . It is common practice to express the wavenumber 

in terms of a reference refractive index n


 as in nkk


0 . 

Under these assumptions one can write the three 
dimensional Beam Propagation Method (BPM) equation: 
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For a given input field    0,, zyxu , the BPM 

equation (24) describes the evolution of the field in the 
space 0z . Furthermore, the 3D equation (24) can be 
simplified for 2D by omitting all dependencies on y . 

 

Fig. 5. Taper beam propagation simulation. 

The authors investigate core-cladding tapered and 
microlensed devices drown from Corning SMF-28 fiber 
with the following specifications:  

 Mode-Field Diameter MDF at   =1550 nm: 
10.4±0.8 μm 

 Core Diameter: 8.2 μm 
 Cladding Diameter: 125.0±0.7 μm 
 Effective Group Index of Refraction at nominal 

MFD: 1.4682 nm 
 Refractive Index Difference: 0.005 
 Numerical Aperture: 0.14 

  
Simulation settings: 

 
 Free Space Wavelength:   =1550 nm 
 Background Refractive Index: 1 
 Core Refractive Index: 1.455 
 Core/Cladding Refractive Index Difference: 

0.005 
 Profile: Step Index 
 3D Structure: Fiber 
 Crank-Nicholson Implicit Scheme 
 Simple Transparent Boundary Condition 
 Padé Order: (1,0) 
 Mode Calculation Method: Correlation 

 Cladding Taper Angle: 20  

 Core Taper Angle: 360  

 Taper Length: 395 μm 
 Lens Diameter: 13.7 μm 
 Lens Radius: 13.85 μm 

 
Fig. 5 shows the simulated beam propagation on a 

tapered core-cladding single-mode fiber terminated with a 
microlens. Tapering effects – covering the region 1000 μm 
to  1395 μm – are visible on the Contour Map (upper right) 
and Height Coded (bottom) images from Figure 5. The 
evolution of the Gaussian Power Monitors alongside the 
propagation  confirms the validity of the analytical method 
proposed by Barnard and Lit and obtained by employing 
the Local Mode Theory. 

The authors performed the evaluation of the Mode 

Field Radius l  of a tapered fiber with the above 

specified geometry with an LD 8900R Far Field Profiler 
from Photon Inc. The measurement device is a real time 
scanning pinhole goniometric radiometer. The instrument 
is based on a scanning method where neither the detector 
nor the light source moves, yet the system provides a 
hemispherical irradiance measurement with 0.05 degree 
resolution in the angular direction and sub-degree 
resolution in the azimuthal direction. The measured values 
are: 

 

 min 3.07f m   

 max 3.49f m   

 Standard Deviation:  
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Fig. 6. Measured 3D Mode Field profile intensity. 

 

The predicted value mf  23.3  falls between 

the minimum and maximum evaluations and close to the 
mean. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5. Concluding remarks 
 
The finite element approach and the experimental 

results confirm the validity of the analytical methods 
proposed by Barnard and Lit and allow sound 
recommendations regarding optimal geometry for tapered 
microlensed single-mode fibers. 

The spot radius is independent of the radius of the 
lens for a well defined range of taper angles and the result 
is important for manufacturing. 
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